Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 337(6098): 1094-7, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22798407

RESUMO

Impairment of the circadian clock has been associated with numerous disorders, including metabolic disease. Although small molecules that modulate clock function might offer therapeutic approaches to such diseases, only a few compounds have been identified that selectively target core clock proteins. From an unbiased cell-based circadian phenotypic screen, we identified KL001, a small molecule that specifically interacts with cryptochrome (CRY). KL001 prevented ubiquitin-dependent degradation of CRY, resulting in lengthening of the circadian period. In combination with mathematical modeling, our studies using KL001 revealed that CRY1 and CRY2 share a similar functional role in the period regulation. Furthermore, KL001-mediated CRY stabilization inhibited glucagon-induced gluconeogenesis in primary hepatocytes. KL001 thus provides a tool to study the regulation of CRY-dependent physiology and aid development of clock-based therapeutics of diabetes.


Assuntos
Carbazóis/farmacologia , Relógios Circadianos/efeitos dos fármacos , Criptocromos/agonistas , Bibliotecas de Moléculas Pequenas , Sulfonamidas/farmacologia , Células 3T3 , Sequência de Aminoácidos , Animais , Carbazóis/química , Carbazóis/isolamento & purificação , Linhagem Celular Tumoral , Criptocromos/metabolismo , Gluconeogênese/efeitos dos fármacos , Gluconeogênese/genética , Glucose-6-Fosfatase/genética , Células HEK293 , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos , Dados de Sequência Molecular , Fosfoenolpiruvato Carboxiquinase (GTP)/genética , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Sulfonamidas/química , Sulfonamidas/isolamento & purificação
2.
Nat Med ; 16(10): 1152-6, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852621

RESUMO

During fasting, mammals maintain normal glucose homeostasis by stimulating hepatic gluconeogenesis. Elevations in circulating glucagon and epinephrine, two hormones that activate hepatic gluconeogenesis, trigger the cAMP-mediated phosphorylation of cAMP response element-binding protein (Creb) and dephosphorylation of the Creb-regulated transcription coactivator-2 (Crtc2)--two key transcriptional regulators of this process. Although the underlying mechanism is unclear, hepatic gluconeogenesis is also regulated by the circadian clock, which coordinates glucose metabolism with changes in the external environment. Circadian control of gene expression is achieved by two transcriptional activators, Clock and Bmal1, which stimulate cryptochrome (Cry1 and Cry2) and Period (Per1, Per2 and Per3) repressors that feed back on Clock-Bmal1 activity. Here we show that Creb activity during fasting is modulated by Cry1 and Cry2, which are rhythmically expressed in the liver. Cry1 expression was elevated during the night-day transition, when it reduced fasting gluconeogenic gene expression by blocking glucagon-mediated increases in intracellular cAMP concentrations and in the protein kinase A-mediated phosphorylation of Creb. In biochemical reconstitution studies, we found that Cry1 inhibited accumulation of cAMP in response to G protein-coupled receptor (GPCR) activation but not to forskolin, a direct activator of adenyl cyclase. Cry proteins seemed to modulate GPCR activity directly through interaction with G(s)α. As hepatic overexpression of Cry1 lowered blood glucose concentrations and improved insulin sensitivity in insulin-resistant db/db mice, our results suggest that compounds that enhance cryptochrome activity may provide therapeutic benefit to individuals with type 2 diabetes.


Assuntos
Ritmo Circadiano/fisiologia , Criptocromos/fisiologia , AMP Cíclico/fisiologia , Gluconeogênese , Fígado/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores Acoplados a Proteínas G/fisiologia
3.
Cell ; 139(1): 199-210, 2009 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-19765810

RESUMO

Two decades of research identified more than a dozen clock genes and defined a biochemical feedback mechanism of circadian oscillator function. To identify additional clock genes and modifiers, we conducted a genome-wide small interfering RNA screen in a human cellular clock model. Knockdown of nearly 1000 genes reduced rhythm amplitude. Potent effects on period length or increased amplitude were less frequent; we found hundreds of these and confirmed them in secondary screens. Characterization of a subset of these genes demonstrated a dosage-dependent effect on oscillator function. Protein interaction network analysis showed that dozens of gene products directly or indirectly associate with known clock components. Pathway analysis revealed these genes are overrepresented for components of insulin and hedgehog signaling, the cell cycle, and the folate metabolism. Coupled with data showing many of these pathways are clock regulated, we conclude the clock is interconnected with many aspects of cellular function.


Assuntos
Relógios Biológicos , Ritmo Circadiano , Estudo de Associação Genômica Ampla , Linhagem Celular , Técnicas de Silenciamento de Genes , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...